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ABSTRACT 
Iron deficiency anemia (IDA) remains the most prevalent form of anemia globally, affecting over 1.2 billion people 
and posing significant public health challenges, particularly among women and children. Traditional diagnostic tools 
such as serum ferritin and hemoglobin concentration often fall short in accuracy, especially in the context of 
inflammation. This review explores recent advances in the understanding of IDA pathophysiology, including the 
pivotal role of hepcidin and the iron regulatory hormone network. Additionally, we examine the evolution of 
diagnostic strategies from conventional iron indices to novel molecular biomarkers such as soluble transferrin 
receptor (sTfR), reticulocyte hemoglobin content (CHr), and hepcidin assays. We also discuss emerging 
technologies, including proteomics, transcriptomics, and the potential of personalized therapy based on genetic and 
molecular profiles. The integration of molecular diagnostics with individualized therapeutic approaches promises to 
enhance the precision and effectiveness of IDA management, moving beyond a one-size-fits-all paradigm. 
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INTRODUCTION 

Iron deficiency anemia (IDA) is a prevalent hematological disorder characterized by a reduction in red blood cell 
count or hemoglobin concentration due to insufficient iron availability [1]. This insufficiency impairs the synthesis 
of hemoglobin, the oxygen-carrying protein in red blood cells, ultimately leading to decreased oxygen delivery to 
tissues [1]. The clinical manifestations of IDA include fatigue, pallor, shortness of breath, cognitive impairment, 
irritability, weakened immunity, and poor physical performance [2]. In children, IDA can result in developmental 
delays and learning difficulties, while in adults, it may cause reduced work capacity and quality of life [3]. Globally, 
IDA affects more than 1.2 billion people and is the most common nutritional deficiency, disproportionately impacting 
women of reproductive age, infants, and individuals in low- and middle-income countries [4]. The condition often 
arises from inadequate dietary intake, increased physiological demands during pregnancy and growth, chronic blood 
loss (such as from menstruation or gastrointestinal bleeding), or impaired iron absorption [4]. Although IDA is 
preventable and treatable, its continued high prevalence suggests that current diagnostic and therapeutic approaches 
are insufficient, particularly in settings complicated by inflammation or comorbid conditions. In recent years, there 
has been a growing interest in elucidating the molecular underpinnings of IDA and refining diagnostic techniques 
beyond conventional laboratory parameters [5]. These advances are paving the way for more precise, individualized 
treatment regimens that can address the specific pathophysiological mechanisms in each patient. Understanding the 
molecular control of iron metabolism, particularly the role of key regulatory molecules such as hepcidin, is central 
to improving both the diagnosis and management of iron deficiency anemia. 

2. Pathophysiology of Iron Deficiency Anemia 
2.1 Iron Homeostasis and Regulation 
Iron homeostasis in the human body is a tightly regulated process, as both deficiency and overload of iron can have 
harmful consequences. The average adult human body contains about 3 to 4 grams of iron, most of which is found 
in hemoglobin within red blood cells [6]. Dietary iron is absorbed mainly in the proximal small intestine, 
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particularly the duodenum, where enterocytes take up iron in its ferrous (Fe²⁺) form through divalent metal 
transporter 1 (DMT1) [7]. Once inside the enterocyte, iron can be stored as ferritin or transported into the 
bloodstream via ferroportin, the only known cellular iron exporter [7]. 
The activity of ferroportin is regulated by hepcidin, a 25-amino-acid peptide hormone produced primarily in the 
liver [8]. Hepcidin serves as the master regulator of systemic iron homeostasis. When hepcidin levels are elevated, 
it binds to ferroportin and causes its internalization and degradation, thereby reducing iron export from enterocytes, 
hepatocytes, and macrophages into the circulation [8]. Conversely, low hepcidin levels enhance ferroportin activity, 
promoting increased dietary iron absorption and mobilization from stores [9]. 
2.2 Role of Hepcidin in Iron Deficiency 
Hepcidin plays a dual role in the development and progression of IDA. Under iron-deficient conditions, hepcidin 
synthesis is downregulated, allowing maximal absorption of dietary iron and mobilization of stored iron to meet the 
body’s needs [9]. However, in the context of inflammation or chronic disease, such as infections, cancer, or 
autoimmune disorders, pro-inflammatory cytokines, particularly interleukin-6 (IL-6), stimulate hepcidin production 
irrespective of iron status [10]. This leads to the sequestration of iron in macrophages and reduced intestinal 
absorption, a condition known as functional iron deficiency [11]. The resulting anemia often mimics true IDA but 
does not respond well to traditional iron supplementation. The interplay between hepcidin and ferroportin thus lies 
at the heart of iron regulation, and its dysregulation is central to various forms of anemia, including anemia of 
chronic disease and mixed anemia [12]. Accurate assessment of hepcidin levels, now possible with specialized assays, 
may offer clinicians a powerful tool to distinguish between different anemia types and tailor treatment strategies 
accordingly. 
2.3 Genetic and Molecular Insights 
In addition to environmental and physiological factors, genetic mutations can significantly influence iron 
metabolism and contribute to iron deficiency anemia. For instance, mutations in the TMPRSS6 gene, which encodes 
the enzyme matriptase-2, impair the inhibition of hepcidin production, resulting in elevated hepcidin levels and 
refractory iron deficiency [13]. Individuals with such mutations often present with iron-refractory iron deficiency 
anemia (IRIDA), a condition that does not respond to oral iron therapy and requires intravenous iron administration. 
Other genetic polymorphisms affecting genes involved in iron sensing and transport, such as HFE (associated with 
hereditary hemochromatosis), TFR2 (transferrin receptor 2), and SLC40A1 (ferroportin), also play a role in 
modulating iron availability and homeostasis [14]. These findings suggest the potential for developing genotype-
based diagnostic and therapeutic approaches. Molecular diagnostics incorporating genetic screening and hepcidin 
assays could eventually enable clinicians to identify the underlying cause of anemia more accurately and implement 
individualized treatment plans. 

3. Evolution of Diagnostic Tools 
3.1 Traditional Biomarkers 
The diagnosis of iron deficiency anemia (IDA) has historically depended on conventional hematological and 
biochemical parameters. These include measurements of hemoglobin concentration, mean corpuscular volume 
(MCV), serum ferritin, serum iron, total iron-binding capacity (TIBC), and transferrin saturation (TSAT) [15]. 
Hemoglobin and MCV indicate anemia severity and red blood cell morphology, respectively, while serum ferritin 
reflects iron storage status [16]. TSAT indicates the proportion of transferrin saturated with iron and serves as a 
proxy for iron availability in circulation [17]. 
Despite their widespread use, these markers suffer from significant limitations. Ferritin, an acute-phase reactant, 
may be elevated in conditions of inflammation, infection, liver disease, and malignancy, even in the presence of true 
iron deficiency [18]. TSAT and serum iron levels can fluctuate with diurnal variations and dietary intake [19]. As 
a result, these conventional markers may not reliably distinguish between absolute iron deficiency and functional 
iron deficiency associated with inflammatory states. Consequently, there has been a growing need for more specific 
and robust biomarkers capable of reflecting iron status independent of inflammatory confounders. 
3.2 Advanced Molecular Biomarkers 
In response to these diagnostic challenges, newer biomarkers have emerged that provide deeper insights into iron 
metabolism and erythropoiesis. One such marker is the soluble transferrin receptor (sTfR), which reflects the 
demand for iron in the bone marrow and is not significantly affected by inflammation [20]. Elevated sTfR levels 
typically indicate iron-deficient erythropoiesis and can be used in conjunction with ferritin to improve diagnostic 
accuracy [21]. Reticulocyte hemoglobin content (CHr) is another valuable parameter, offering real-time information 
about the iron available for incorporation into newly produced red blood cells [22]. A low CHr value is a sensitive 
indicator of iron-restricted erythropoiesis and can detect early changes in response to iron therapy [23]. 
Hepcidin measurement has gained traction as a central tool in assessing iron metabolism. As the key regulator of 
systemic iron homeostasis, hepcidin levels provide direct information on iron absorption and mobilization [24]. 
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Suppressed hepcidin levels suggest active iron deficiency or increased erythropoietic drive, while elevated levels 
point to functional deficiency often linked with chronic disease or inflammation [25]. Zinc protoporphyrin (ZPP) 
levels rise when iron is insufficient for heme synthesis, leading to the incorporation of zinc into protoporphyrin rings 
instead of iron [26]. Although less specific than hepcidin or CHr, ZPP can serve as a supplementary indicator of 
iron-deficient erythropoiesis [15]. 
3.3 Omics and Systems Biology Approaches 
Technological advances in omics sciences-particularly proteomics, transcriptomics, and metabolomics, are 
transforming our understanding of IDA at the molecular level. High-throughput screening methods now enable the 
profiling of gene expression patterns and protein signatures associated with iron metabolism, erythropoiesis, and 
inflammation [27]. Transcriptomic studies have revealed differential gene expression in pathways regulating iron 
transport, oxidative stress, and immune modulation, allowing for stratification of patients based on molecular 
phenotype [28]. Proteomic analysis of plasma and red blood cell proteins has uncovered novel biomarkers involved 
in iron trafficking, heme synthesis, and cellular stress responses [29]. These findings have the potential to improve 
diagnostic discrimination between IDA and anemia of chronic disease. Integrated systems biology approaches that 
combine clinical, genomic, and proteomic data hold promise for building predictive models that guide diagnosis and 
treatment decisions with higher precision. 

4. Toward Personalized Therapy 
4.1 Targeted Iron Supplementation 
Personalized treatment of IDA involves tailoring iron therapy to the individual’s clinical and molecular profile. Oral 
iron supplementation, typically in the form of ferrous sulfate, remains the first-line therapy due to its cost-
effectiveness and ease of administration [30]. However, gastrointestinal side effects such as constipation, nausea, 
and epigastric discomfort limit adherence in many patients. Furthermore, absorption of oral iron may be impaired 
in the presence of high hepcidin levels or gastrointestinal pathology [31]. In such cases, intravenous iron 
formulations, including ferric carboxymaltose and iron sucrose, offer more efficient and rapid replenishment of iron 
stores with a favorable safety profile [32]. These formulations are particularly beneficial in patients with 
inflammatory diseases, chronic kidney disease, or those undergoing surgery. Selection between oral and parenteral 
iron should therefore consider hepcidin status, absorption potential, urgency of repletion, and patient preference. 
4.2 Hepcidin-Guided Therapy 
Incorporating hepcidin measurement into clinical decision-making is an emerging paradigm in IDA management 
[33]. Low hepcidin levels predict a favorable response to oral iron, suggesting that the gastrointestinal tract remains 
receptive to iron absorption [34]. Conversely, elevated hepcidin levels may indicate reduced absorption potential, 
guiding the clinician toward parenteral administration or therapeutic strategies to reduce inflammation [35]. 
Hepcidin-guided therapy is also being explored to prevent iron overload in patients receiving chronic iron 
supplementation, particularly those with hereditary or inflammatory anemia [36]. Serial hepcidin measurements 
could eventually serve as a feedback mechanism for dose adjustment and monitoring of therapeutic efficacy. 
4.3 Future Directions in Gene-Based Therapy 
With growing insights into the genetic regulation of iron metabolism, gene-based interventions are gaining interest. 
Techniques such as CRISPR/Cas9 genome editing hold potential for correcting mutations in genes such as 
TMPRSS6, HFE, or SLC40A1 that are implicated in hereditary anemias. Additionally, small interfering RNA 
(siRNA) therapies targeting hepcidin expression or upstream regulatory pathways may offer novel treatment 
avenues for refractory or functional IDA. While these technologies remain in preclinical or early clinical phases, 
their long-term implications for personalized treatment are profound. As molecular diagnostics become more 
accessible, integrating genomic profiling with biomarker assessment may redefine the clinical management of iron 
deficiency anemia in the years ahead. 

CONCLUSION 
Iron deficiency anemia is transitioning from a diagnosis based on simple blood counts to one rooted in molecular 
precision. Advances in our understanding of iron metabolism and the development of novel biomarkers are paving 
the way for more accurate diagnosis and personalized treatment strategies. Future integration of omics data, 
hepcidin assays, and genotype information into clinical workflows may significantly enhance the management of 
IDA, especially in complex or refractory cases. 
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